JEE Main Chemistry Syllabus

04Oct,2018
By Bibhor Mohanta

The National Test Agency (NTA) has released the official Chemistry syllabus of JEE Main 2020. Candidates are advised to check the JEE Main Chemistry syllabus to get an idea about the topics from where the questions are expected to appear in the exam. Engineering aspirants dreaming to crack JEE Main should ensure that they are familiar with the exam syllabus. JEE Main syllabus for Chemistry will be based on the topics covered in Class 10 and Class 12. The JEE Main syllabus for Chemistry gives the section wise break up of units, chapters, and topics. In the chemistry syllabus of JEE Main, there are three sections in total. Section A comprises of Physical Chemistry Syllabus , Section B consists of topics on Inorganic Chemistry Syllabus and Section C includes Jee Main Organic Chemistry Syllabus. Each section of JEE Main chemistry syllabus mentions in detail the topics which fall under each unit and chapter. Candidates can plan their preparation according to the syllabus for the chemistry of JEE Main 2020. 

 

JEE Main Chemistry Syllabus:

The syllabus for Chemistry is divided into three sections - Physical Chemistry, Inorganic Chemistry, and Organic Chemistry.

 

Section A: Physical Chemistry

UNIT 1: Some Basic concepts in Chemistry

Matter and its nature, Dalton’s atomic theory; Concept of atom, molecule, element and compound; Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis; Laws of chemical combination; Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae; Chemical equations and stoichiometry.

 

UNIT 2: States of Matter

Classification of matter into solid, liquid and gaseous states.
 

Gaseous State:

Measurable properties of gases; Gas laws - Boyle’s law, Charle’s law, Graham’s law of diffusion, Avogadro’s law, Dalton’s law of partial pressure; Concept of Absolute scale of temperature; Ideal gas equation, Kinetic theory of gases (only postulates); Concept of average, root mean square and most probable velocities; Real gases, deviation from Ideal behaviour, compressibility factor, van der Waals equation, liquefaction of gases, critical constants.

 

Liquid State:

Properties of liquids- Vapour pressure, viscosity and surface tension, and effect of temperature on them (qualitative treatment only).
 

Solid State:

Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea); Bragg’s Law and its applications; Unit cell and lattices, packing in solids (fcc, bcc and hcp lattices), voids, calculations involving unit cell parameters, imperfection in solids; Electrical, magnetic and dielectric properties.

 

UNIT 3: Atomic Structure

Discovery of sub-atomic particles (electron, proton and neutron); Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of hydrogen atom, Bohr model of hydrogen atom - its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr’s model; Dual nature of matter, de-Broglie’s relationship, Heisenberg uncertainty principle.

Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features, concept of atomic orbitals as one electron wave functions; Variation of  ? and ?2 with r for 1s and 2s orbitals; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s, p and d - orbitals, electron spin and spin quantum number; Rules for filling electrons in orbitals - Aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.

 

UNIT 4: Chemical Bonding and Molecular Structure

Kossel - Lewis approach to chemical bond formation, the concept of ionic and covalent bonds.

Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy.

Covalent Bonding: Concept of electronegativity, Fajan’s rule, dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules.

Quantum mechanical approach to covalent bonding: Valence bond theory - Its important features, the concept of hybridization involving s, p and d orbitals; Resonance.

Molecular Orbital Theory - Its important features, LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, the concept of bond order, bond length and bond energy. Elementary idea of metallic bonding. Hydrogen bonding and its applications.

 

UNIT 5: Chemical Thermodynamics

1. Fundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes.

2. The first law of thermodynamics: Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hess’s law of constant heat summation; Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization and solution.

3. The second law of thermodynamics: Spontaneity of processes; ?S of the universe and ?G of the system as criteria for spontaneity, ?Go (Standard Gibbs energy change) and equilibrium constant.

 

UNIT 6: Solutions

Different methods for expressing concentration of solution - molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult’s Law - Ideal and non-ideal solutions, vapour pressure - composition, plots for ideal and non-ideal solutions; Colligative properties of dilute solutions - relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance.

 

UNIT 7: Equilibrium

1. Meaning of equilibrium, the concept of dynamic equilibrium.

2. Equilibria involving physical processes: Solid-liquid, liquid - gas and solid - gas equilibria, Henry’s law, general characteristics of equilibrium involving physical processes.

3. Equilibria involving chemical processes: Law of chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, the significance of ?G and ?Go in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, effect of catalyst; Le Chatelier’s principle.

4. Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Bronsted - Lowry and Lewis) and their ionization, acid-base equilibria (including multistage ionization) and ionization constants, ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions.

 

UNIT 8: Redox Reactions and Electrochemistry

1. Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions.

2. Electrolytic and metallic conduction, conductance in electrolytic solutions, specific and molar conductivities and their variation with concentration: Kohlrausch’s law and its applications.

3.Electrochemical cells - Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half - cell and cell reactions, emf of a Galvanic cell and its measurement; Nernst equation and its applications; Relationship between cell potential and Gibbs’ energy change; Dry cell and lead accumulator; Fuel cells; Corrosion and its prevention.

 

UNIT 9: Chemical Kinetics

Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first order reactions, their characteristics and half-lives, effect of temperature on rate of reactions - Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).

 

UNIT 10: Surface Chemistry

Adsorption - Physisorption and chemisorption and their characteristics, factors affecting the adsorption of gases on solids - Freundlich and Langmuir adsorption isotherms, adsorption from solutions.

Catalysis - Homogeneous and heterogeneous, activity and selectivity of solid catalysts, enzyme catalysis and its mechanism.

Colloidal statedistinction among true solutions, colloids and suspensions, classification of colloids - lyophilic, lyophobic; multi molecular, macromolecular and associated colloids (micelles), preparation and properties of colloids - Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation; Emulsions and their characteristics.

 

Section B: Inorganic Chemistry

UNIT 11: Classification of Elements and Periodicity in Properties

Modem periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elements-atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity.

 

UNIT 12: General Principles and Process of Isolation of Metals

Modes of occurrence of elements in nature, minerals, ores; steps involved in the extraction of metals - concentration, reduction (chemical. and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals.

 

UNIT 13: Hydrogen

Position of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen; Physical and chemical properties of water and heavy water; Structure, preparation, reactions and uses of hydrogen peroxide; Classification of hydrides - ionic, covalent and interstitial; Hydrogen as a fuel.

 

UNIT 14:  s Block Elements (Alkali and Alkaline Earth Metals)

Group 1 and Group 2 Elements

1. General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships.

2. Preparation and properties of some important compounds - sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogen carbonate; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca.

 

UNIT 15:  p Block Elements

Group 13 to Group 18 Elements

General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group.

Groupwise study of the p – block elements

Group - 13

Preparation, properties and uses of boron and aluminium; Structure, properties and uses of borax, boric acid, diborane, boron trifluoride, aluminium chloride and alums.

Group - 14

Tendency for catenation; Structure, properties and uses of allotropes and oxides of carbon, silicon tetrachloride, silicates, zeolites and silicones.

Group - 15

Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structure and uses of ammonia, nitric acid, phosphine and phosphorus halides, (PCl3, PCl5); Structures of oxides and oxoacids of nitrogen and phosphorus.

Group - 16

Preparation, properties, structures and uses of dioxygen and ozone; Allotropic forms of sulphur; Preparation, properties, structures and uses of sulphur dioxide, sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.

Group - 17

Preparation, properties and uses of chlorine and hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.

Group - 18

Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.

 

UNIT 16: d – and f – Block Elements

1. Transition Elements

2. General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first row transition elements - physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties and uses of K2Cr2O7 and KMnO4.

3. Inner Transition Elements

4. Lanthanoids - Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction.

5. Actinoids - Electronic configuration and oxidation states.

 

UNIT 17: Co-ordination Compounds

Introduction to co-ordination compounds, Werner’s theory; ligands, coordination number, denticity, chelation; IUPAC nomenclature of mononuclear co-ordination compounds, isomerism; Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).

 

UNIT 18: Environmental Chemistry

1. Environmental pollution - Atmospheric, water and soil.

2. Atmospheric pollution - Tropospheric and stratospheric

3. Tropospheric pollutants - Gaseous pollutants: Oxides of carbon, nitrogen and sulphur, hydrocarbons; their sources, harmful effects and prevention; Green house effect and Global warming; 4. Acid rain; Particulate pollutants: Smoke, dust, smog, fumes, mist; their sources, harmful effects and prevention.

5. Stratospheric pollution - Formation and breakdown of ozone, depletion of ozone layer - its mechanism and effects.

6. Water Pollution - Major pollutants such as pathogens, organic wastes and chemical pollutants; their harmful effects and prevention.

7. Soil pollution - Major pollutants such as: Pesticides (insecticides,. herbicides and fungicides), their harmful effects and prevention.

8. Strategies to control environmental pollution.

10. Section-C: Organic Chemistry

 

UNIT 19: Purification and Characterisation of Organic Compounds

1. Purification - Crystallization, sublimation, distillation, differential extraction and chromatography - principles and their applications.

2. Qualitative analysis - Detection of nitrogen, sulphur, phosphorus and halogens.

3. Quantitative analysis (basic principles only) - Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus.

4. Calculations of empirical formulae and molecular formulae; Numerical problems in organic quantitative analysis.

 

UNIT 20: Some Basic Principles of Organic Chemistry

Tetravalency of carbon: Shapes of simple molecules - hybridization (s and p); Classification of organic compounds based on functional groups: - C = C - , - C ? C - and those containing halogens, oxygen, nitrogen and sulphur; Homologous series; Isomerism - structural and stereoisomerism.

Nomenclature (Trivial and IUPAC)

 

Covalent bond fission - Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles.

Electronic displacement in a covalent bond - Inductive effect, electromeric effect, resonance and hyperconjugation.

Common types of organic reactions - Substitution, addition, elimination and rearrangement.

 

UNIT 21: Hydrocarbons

Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions.

Alkanes - Conformations: Sawhorse and Newman projections (of ethane); Mechanism of halogenation of alkanes.

Alkenes - Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff’s and peroxide effect); Ozonolysis, oxidation, and polymerization.

Alkynes - Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization.

Aromatic hydrocarbons - Nomenclature, benzene - structure and aromaticity; Mechanism of electrophilic substitution: halogenation, nitration, Friedel - Craft’s alkylation and acylation, directive influence of functional group in mono-substituted benzene.

 

UNIT 22: Organic Compounds Containing Halogens

1. General methods of preparation, properties and reactions; Nature of C-X bond; Mechanisms of substitution reactions.

2. Uses; Environmental effects of chloroform, iodoform, freons and DDT.

 

UNIT 23: Organic Compounds Containing Oxygen

1. General methods of preparation, properties, reactions and uses.

2. Alcohols, Phenols and Ethers

3. Alcohols: Identification of primary, secondary and tertiary alcohols; mechanism of dehydration.

4. Phenols: Acidic nature, electrophilic substitution reactions: halogenation, nitration and sulphonation, Reimer - Tiemann reaction.

5. Ethers: Structure.

6. Aldehyde and Ketones

7. Nature of carbonyl group; Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones; Important reactions such as - Nucleophilic addition reactions (addition of HCN, NH3 and its derivatives), Grignard reagent; oxidation; reduction (Wolff Kishner and Clemmensen); acidity of ? - hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction; Chemical tests to distinguish between aldehydes and Ketones.

8. Carboxylic Acids: Acidic strength and factors affecting it.

 

UNIT 24: Organic Compounds Containing Nitrogen

1. General methods of preparation, properties, reactions and uses.

2. Amines: Nomenclature, classification, structure, basic character and identification of primary, secondary and tertiary amines and their basic character.

3. Diazonium Salts: Importance in synthetic organic chemistry.

 

UNIT 25: Polymers

1. General introduction and classification of polymers, general methods of polymerization - addition and condensation, copolymerization;

2. Natural and synthetic rubber and vulcanization; some important polymers with emphasis on their monomers and uses - polyethene, nylon, polyester and bakelite.

 

UNIT 26: Bio Molecules

1. General introduction and importance of biomolecules.

2. Carbohydrates - Classification: aldoses and ketoses; monosaccharides (glucose and fructose), constituent monosaccharides of oligosacchorides (sucrose, lactose, maltose) and polysaccharides (starch, cellulose, glycogen).

3. Proteins - Elementary Idea of amino acids, peptide bond, polypeptides; Proteins: primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.

4. Vitamins - Classification and functions.

5. Nucleic Acids - Chemical constitution of DNA and RNA. Biological functions of nucleic acids.

 

UNIT 27: Chemistry in Everyday Life

Chemicals in medicines - Analgesics, tranquillizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamines - their meaning and common examples.

Chemicals in food - Preservatives, artificial sweetening agents - common examples.

Cleansing agents - Soaps and detergents, cleansing action.

 

UNIT 28: Principles Related to Practical Chemistry

1. Detection of extra elements (N, S, halogens) in organic compounds; Detection of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl and amino groups in organic compounds.

2. The chemistry involved in the preparation of the following:

3. Inorganic compounds: Mohr’s salt, potash alum.

4. Organic compounds: Acetanilide, p-nitro acetanilide, aniline yellow, iodoform.

5. The chemistry involved in the titrimetric exercises - Acids bases and the use of indicators, oxalic-acid vs KMnO4, Mohr’s salt vs KMnO4.

6. Chemical principles involved in the qualitative salt analysis:

Cations - Pb2+ , Cu2+, AI3+, Fe3+, Zn2+, Ni2+, Ca2+, Ba2+, Mg2+, NH4+.

Anions- CO32-, S2-, SO42-, NO2-, NO3-, CI-, Br, I. (Insoluble salts excluded).

- Chemical principles involved in the following experiments:

1. Enthalpy of solution of CuSO4

2. Enthalpy of neutralization of strong acid and strong base.

3. Preparation of lyophilic and lyophobic sols.

4. Kinetic study of the reaction of iodide ion with hydrogen peroxide at room temperature.

 

Download JEE Main Chemistry Syllabus (pdf), Click Here 

Also Read About: JEE-MAIN 2020 Physics Syllabus 

Also Read, JEE Main Mathematics Syllabus

JEE Main Eligibility: Age, FAQs, Subject, Qualification

LATEST NEWS


SNAP 2020 Third phase Exam Analysis, Check here in details
KCET 2020 Invites for the Filling of the Left over Seats
NLU has Rescheduled the AILET 2021 Exam Dates and the Application will Commence from 3rd week of January 2021
XAT 2021 Answer Key Released, Check Download Process
NMAT 2020- GMAC additional Registration Window actives on 18th January @nmat.org
GATE 2021 Admit Card Released, Check Details Here
OJEE 2020 starts the institute level Counselling from 12th January
MCC has released the Eligible Candidate List for NEET 2020 Stray Round
The Final Merit List for CAP Round 1 of MAH CET MBA Counseling is released now
UPSC CDS 1 Admit card Released, Click here to download
JEE advance 2021 exam will be conducted on 3rd July 2021
KMAT 2020 has declared its PBT Mode Exam Result
CLAT 2021 Postponed avoiding clash with CBSE Exam
IIT Bombay Released Sample/Practice Link for UCEED 2021
MHT CET 2020 has Released the Final Merit List for Engineering Admission
TANCET 2021 Starts Registration from 19th January 2021
Bar Council of India has released a new rule to abolish one year LLM Course
SNAP 2020 Exam Tomorrow, Know Exam Day Guidelines
Karnataka PGCET 2nd And Final Counselling Schedule Released
XLRI Released XAT 2021 Response Sheet, Answer Key To Be Out Soon
JEE Advanced 2021 Eligibility And Exam Date Declare on Jan 7, Said Ramesh Pokhriyal
AMU Entrance 2020 Result Announced, Check Details Here
INI CET 2021 Round Two Counselling Result Declared
MAT 2020 December Session Result Announced
NEET UG 2020 Registration Starts For Stray Vacancy Round
LPUNEST 2021 Registration Starts For B.Tech Program
MAT 2021 February Session Exam Dates Released, Check Schedule
XAT 2021 Exam Analysis, Check here to know the type of questions
CAT 2020 Result Announced, Download Result Scorecard
MHT CET 2020 Merit List Released
IIFT 2021 Application Correction Window opened by NTA , Check here
CLAT 2021 Registration Started, Apply Here
NEET MDS 2021 Result Declared, Check Result here
UCEED 2021 Admit card Released , Click here to download
IIM Indore: Notification CAT 2020 Final Answer Key Released
UPSC NDA 1 2021: Application Form Date Announced
Karnataka PGCET 2020: First Round of Seat Allotment Result Announced
IBSAT 2020 Result Announced, Check Result here
CSIR UGC NET Result announced by NTA, Check here
Karnataka PGCET : Mock Seat Allotment Result announced

© 2020 | educationasia.in | All Rights Reserved